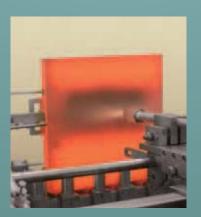
EVERLOY SPRAY NOZZLES EVERLOY for STEEL MILLS **Product Information** KYORITSU GOKIN CO., LTD. CAT.17E-R2

WE ARE EVERLOY

Founded more than five decades ago, EVERLOY has a technology - rich history in Spray Nozzles and Tungsten Carbides, offering a broad range products for the steel making industry.

Its flagship product, EVERLOY's Descaling Nozzles, are made of highly durable tungsten carbide and have become an international benchmark for descaling in the steel industry, providing more uniform and consistent impact force along the spray width with excellent wear resistance.

Most importantly, EVERLOY understands the challenges its customers face in delivering clean, high performance, quality steel. To meet those demands, EVERLOY's engineers are continuously researching and testing its products to provide technological advancements to help.


Global sales network

EVERLOY's reputation in the steel industry is advanced by the knowledge and experience of its global sales force. Our sales representatives work closely with customers to understand their issues, find solutions and fine - tune Everloy product applications to optimize energy savings and product quality. Visit our website and find contact information under the "Company" roll down menu.

More Than Nozzles

One of EVERLOY's philosophies is the importance of evolution, meaning we need to evolve our products as our customers' needs evolve. We need to use technology to not only develop the highest grade of spray nozzles, but to thoroughly understand how our products perform in customer applications.

EVERLOY invests a sizable amount of time and energy at its Kaibara Works Research & Evaluation Facility in Japan simulating nozzle performance based on actual customer applications. For Descale Nozzles we've conducted extensive studies to measure scale removal behavior with variables such as flow rate, pressure, spray distance, and spray time, including impact force distribution. Similarly, we are unsurpassed in the depth of research and data developed for Air Mist Nozzle.

Academic Literature

EVERLOY's technical papers are available to customers upon request:

- Research on higher pressure Descaling Nozzles together with extended life and durability (1995)
- Research for the impact force on super high pressure Descaling Nozzle (1997)
- Improvement of Strip Surface by Eliminating Tiger Mark (2000)
- The sophisticated Air Mist Nozzle for secondary cooling of the continuous caster (2010)
- Development and evaluation of Descaling Nozzles with high performance (2014)

Everloy Covers Steel

Precision. Wear resistance. Operational and maintenance flexibility. Customized solutions. And technical support. Just a few of the reasons so many steel makers consider Everloy an indispensable component in their steel making process.

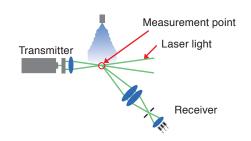
EVERLOY Technology

Test Equipment 5
Heat Transfer Coefficient Test 6

Continuous Caster

Nozzle selection Continuous Caster	7
Air Mist Nozzles	9
Advantage of Air Mist Nozzle	9
Nozzle mounting	10
Feature of Air Mist Nozzle	11
KSAME	12
KSAMH	13
KSAMK	14
Height difference	15
Control methods	16
Spray width control	17
Hydraulic Nozzles	19
Flat Spray Nozzle - KSZ	19
Thickening Flat Spray Nozzle - KSAMR	21
Extra Thickening Flat Spray Nozzle - KSTF	23

Nozzle selection | Descaling Nozzles **Everloy Descaling Nozzle Technology** 27 **DNEX** 29 **DNX** 31 DNH 32 **DNR** 33 **DNK** 34 **DNM** 35 **Models & specifications** 36 **Long Filter** 37 **Descaling Check Valve (DCV)** 38 Remover 39 **Protective Cap** 41 **Alignment Tip and Bar** 42 **Handling manual** 43


Other Applications

Flat Spray Nozzle - KSAM	45
Air Blaster	47
Air Jet Nozzle	49
Ball Joint	50

Test Equipment

Phase Doppler Particle Analyzer(PDPA) System

EVERLOY uses the PDPA measurement system, the most authoritative technology for particle size analysis.

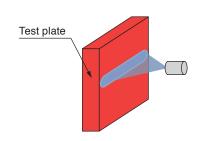
The PDPA system uses the laser doppler effect to measure, simultaneously, the size, velocity and concentration of spray particles. This highly specialized technology is capable of sampling many particles.

Flow Distribution Measurement System

This system measures the distribution of spray flow density by spraying liquid on an acrylic container grid and measuring the amount of deposits.

The results of the measurement tests are illustrated in a resulting flow.

Impact Force Distribution Tester



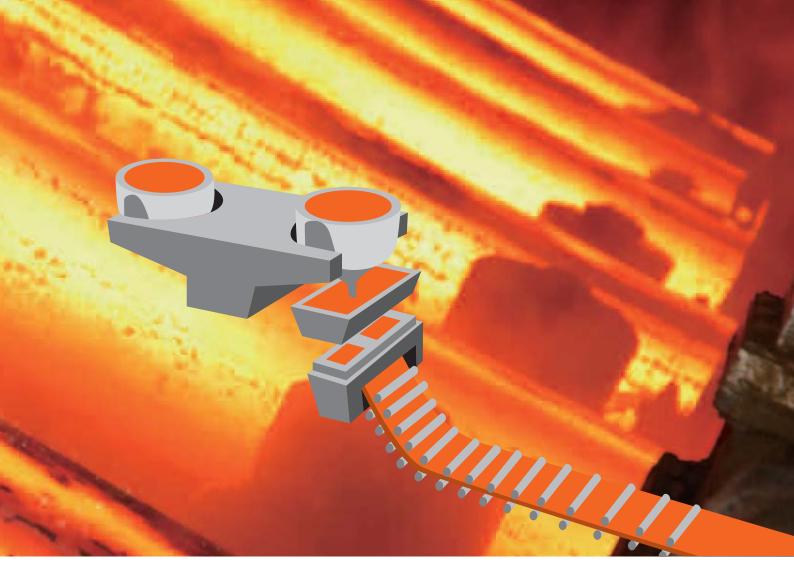
This system determines the impact force distribution of a spray by running a pressure sensor underneath the spray.

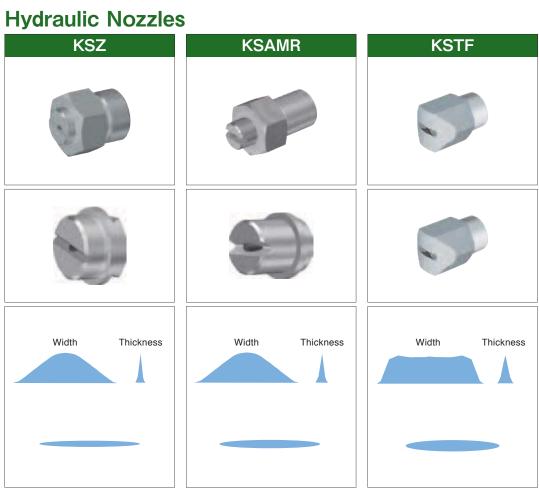
It is also capable of producing measurement results in an impact force distribution graph.

Heat Transfer Coefficient (HTC) Test

The temperature of the plate is measured through thermocouples that are installed and the HTC is calculated to evaluate cooling performance.

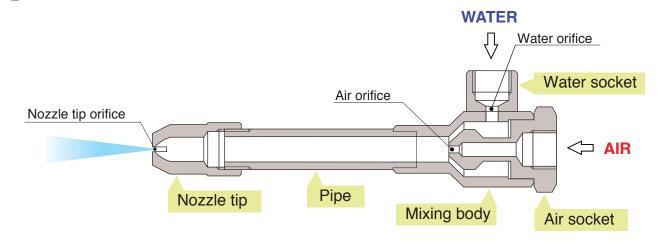
Nozzle type	KSAME (Single slit)	KSAMK (Double slit)
Spray Pattern		
Spray Footprint		
Distribution of HTC (surface temperature at 900 °C) Condition Air flow : 10 m³/h(nor) Water flow : 20 L/min	Average HTC : 435 W/ (m²-K)	Average HTC : 540 W/ (m²·K)


Continuous Caster


EVERLOY understands the intense pressure continuous casters face to produce a wider variety of steel grades, the need for operational and maintenance flexibility, and the desire to reduce operation costs while optimizing product quality. That's why EVERLOY, more than any of its competitors, works closely with steelmakers and OEMs to create customized solutions to their continuous casting need. EVERLOY nozzles offer the highest precision in water density, distribution and thickness, more uniform flow and impact, and the most hardware features to provide customer - specific configurations.

EVERLOY **Air Mist Nozzles** and **Hydraulic Nozzles** are a critical component of the continuous casting process.

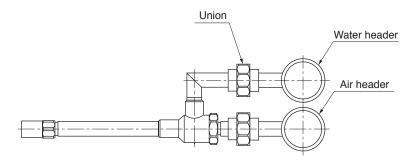
Air Mist Nozzles



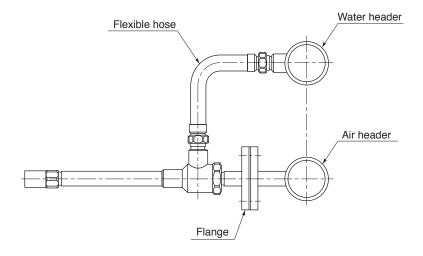
Advantage of Air Mist Nozzle

Most of the modern continuous casters are equipped with Air Mist Nozzles. The advantages of Air Mist Nozzles are summarized as follows:

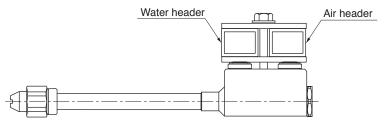
Basic structure



Advantage


Nozzle type	Air Mist Nozzle	Flat Spray Nozzle	Oval Spray Nozzle		
Fluid	Air & Water	Water	Water		
Spray pattern	θ < 120°	θ < 120°	θ < 90°		
Water flow distribution					
Turn-down ratio	1:20 (max.)	1:5	1:5		
Features	 Variable spray area Higher impact force Smaller particle size Resistance to clogging 	Simple structure for resistance to clogging	Wider spray areaSmaller particle size		

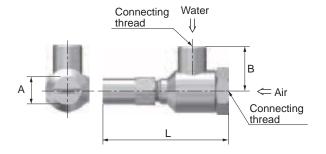
Nozzle mounting


Union style

Flange style

Block style

The installation can be easily completed by bolting air/water connections to the pipe. At the same time, the nozzle tip allows precise self-alignment by putting the key groove of the nozzle tip on the keys of the pipe.


Features

- Uniform flow distribution.
- Wide water turn-down ratio.
- Highly resistant to clogging, with a long service life.
- Truly custom made specification and shapes.

Shapes & dimensions

■ Compact type

Madal	Dime	nsion	[mm]	Connecti	ng thread	Weight	
Model	Α	В	L	Water	Air	[g]	
1/4 KSAME	17	34.5	100	Rc 1/4	Rc 1/4	200	
3/8 KSAME	21	34.5	100	Rc 3/8	Rc 3/8	350	
1/2 KSAME	26	49	140	Rc 1/2	Rc 1/2	850	
3/4 KSAME	32	49	150	Rc 1/2	Rc 1/2	1000	

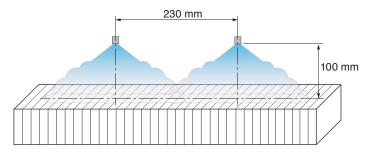
* NPT thread also available

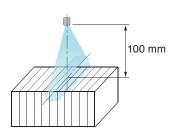
■ Straight type

Part	Material
Nozzle tip	303 Stainless steel, Brass
Pipe	304 Stainless steel
Mixing body	304 & 303 Stainless steel

■ Block type ■ Block type ■ Block type ■ Block type

Features


■ Uniform flow and impact force distribution.



Technical data

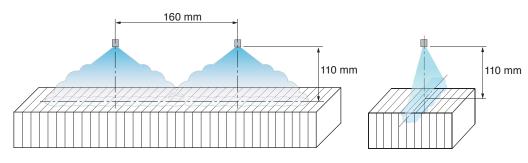
Flow distribution

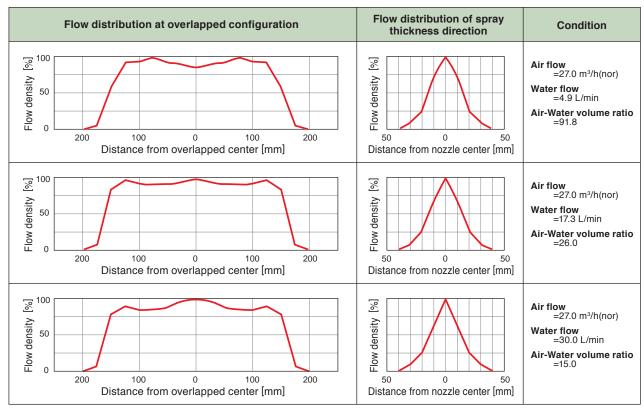
Nozzle model $^{3}/_{8}$ KSAME 52120 - $^{3}/_{8}$ S750 - $^{3}/_{8}$ A57 $^{3}/_{8}$ W35

Flow distribution at overlapped configuration	Flow distribution of spray thickness direction	Condition
300 200 100 0 100 200 300 Distance from overlapped center [mm]	So 0 50 Distance from nozzle center [mm]	Air flow =29.0 m³/h(nor) Water flow =0.93 L/min Air-Water volume ratio =520
300 200 100 0 100 200 300 Distance from overlapped center [mm]	So 0 50 Distance from nozzle center [mm]	Air flow =19.5 m³/h(nor) Water flow =9.57 L/min Air-Water volume ratio =34.0
300 200 100 0 100 200 300 Distance from overlapped center [mm]	So 0 50 Distance from nozzle center [mm]	Air flow =14.9 m³/h(nor) Water flow =17.2 L/min Air-Water volume ratio =14.4

KSAMH

Features


Creating a thicker spray pattern than the standard single slit nozzle that leads to higher cooling efficiency.

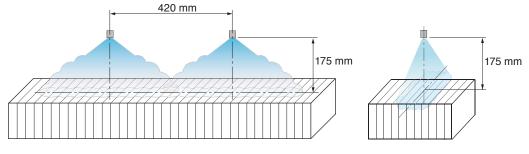


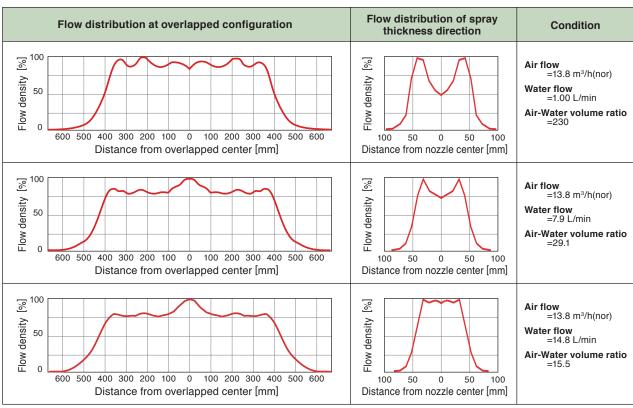
Technical data

Flow distribution

Nozzle model 1/2 KSAMH 5580-1/2 S350 - 1/2 A80 1/2 W51

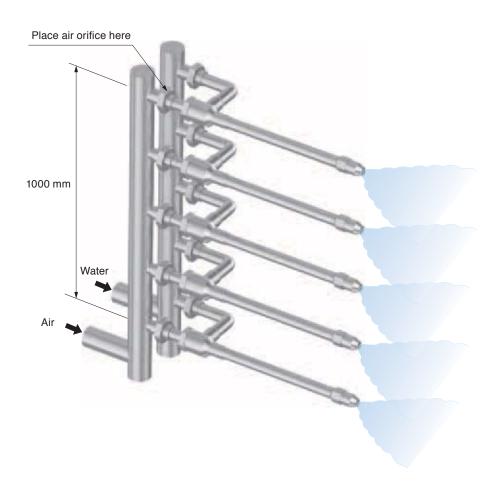
Features


- A double slit leading to a thick spray pattern spray pattern.
- Uniform impact force distribution.
- Higher cooling performance at higher water flow rate.



Technical data

Flow distribution


Nozzle model 3/8 KSAMK 16170×2-3/8 S1000 - 3/8 A42 3/8 W46

Height difference

As air and water have physical properties, water pressure varies more than air pressure if there is a height difference between the nozzle in the same air and water control loop. The influence of height difference becomes larger when water volume becomes smaller. As a result, nozzles installed in a higher position create less water volume when their volume is in the lower side and a nozzle installed in the lower position creates larger water volume. Consequently, specified water volume cannot be sprayed onto the slab. To solve such issues, put air orifices between the nozzle and air pipe, except for the lowest row, to control air volume in the same loop is proposed.

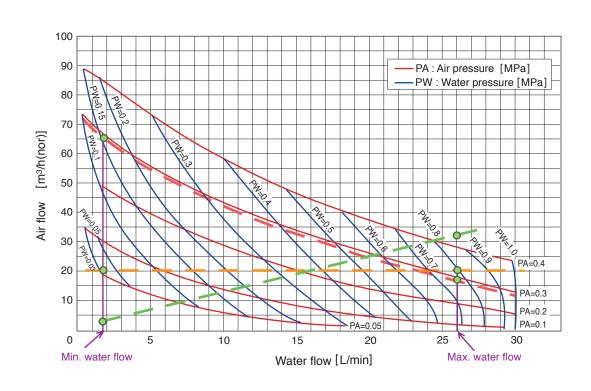
Height	Height		Water flow [L/min]						
difference	Total air flow [m³/h(nor)]	Without	air orifice	With air orifice					
[mm]	[111 /11(1101)]	At min.	At max.	At min.	At max.				
1000		0.64	13.80	1.88	14.56				
750		1.16	14.08	1.70	14.26				
500	150	1.64	14.44	1.86	14.38				
250		2.22	14.84	1.60	14.42				
0		2.90	14.88	1.66	14.19				
	rage ation)	1.71 (±70 %)	14.41 (±4%)	1.74 (±8 %)	14.36 (±1 %)				

Control methods

1. Constant air pressure 🏻 — 🖳 —

- Control is easy.
- Air flow is lowest at maximum water flow, and air flow is highest at minimum water flow.

2. Constant air volume

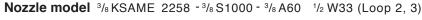

- Control is relatively easy.
- Higher turn-down ratio is possible.

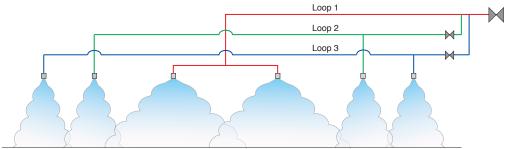
3. Constant air-water volume ratio

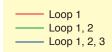
- Control is difficult and turn down ratio is lower.
- Less change in droplet size.

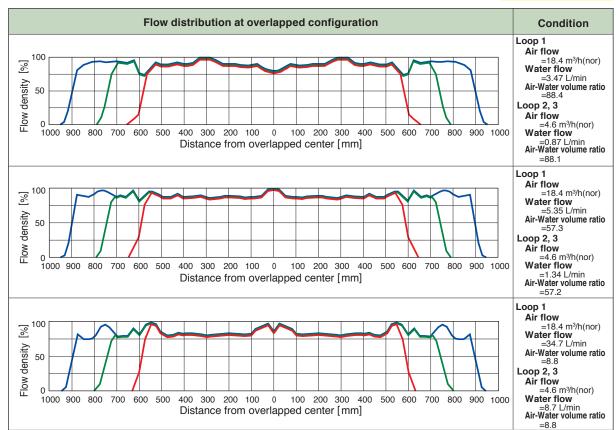
4. Combination

- Control is difficult.
- Combination of above-mentioned control methods.


Spray width control

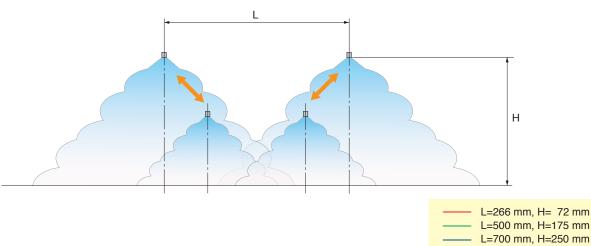

If casting a wide range of slab widths, the spray nozzle control mechanism is critical in controlling over cooling of slab edges. There are mainly two ways to control spray width.

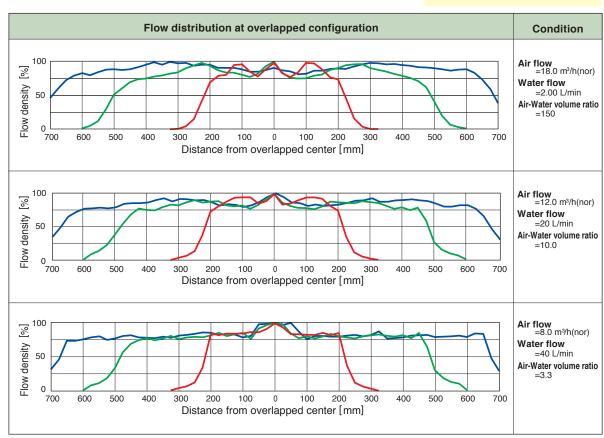

Width control by water control loop


A water loop allows for cooling of varying width of slabs. For narrow slabs, outside nozzles on the loop can be turned off. For wider slabs, narrow-angled outside nozzles can be turned on to provide more coverage.

Nozzle model 1/2 KSAME 9596 -1/2 S1000 - 1/2 A120 1/2 W66 (Loop 1)





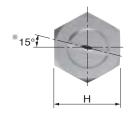


Width control by changing nozzle pitch and distance

Spray width control is accomplished by changing nozzle pitch and spray height. Precise spray width control is possible but higher spray distance is required when a wide size slab needs to be sprayed.

KSZ

Features


- Dove tail shaped groove provides:
 - Precise self-alignment and fixed spray position.
 - Anti-drop off when nozzle tip is put on/off.

Applications

- Work Roll cooling
- Slab cooling

Shapes & dimensions

* Offset angle

	Dime	nsion	[mm]	Value at 0.3 MPa pressure			
Model	Н	L	D	Flow rate [L/min]	Spray angle (width)	Spray angle (thickness)	
KSZ	32	38	28	6 to 80	15 to 120°	5 to 10°	
KSZS	22	27	17	4 to 20	15 to 120°	5 to 10°	

Сар

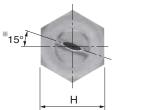
Nozzle tip

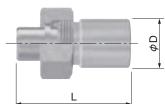
Weld adapter

		Weight at following model [g]			
Part	Material	KSZS	KSZ		
Cap	303 Stainless steel	25	50		
Nozzle tip	303 Stainless steel	10	35		
Weld adapter	304 Stainless steel	20	65		

Models & specifications

Model	Model number	Minimum orifice							Pa]						
		[mm]	0.05	0.1	0.2	0.3	0.5	0.7	1.0	1.5	0.1	0.2	0.3	0.5	1.0
	0430	1.6	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	24°	28°	30°	32°	34°
K070	0445	1.5	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	36°	42°	45°	48°	51°
KSZS	0460	1.3	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	49°	57°	60°	65°	67°
	0490	1.1	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	75°	86°	90°	96°	101°
	0630	2.1	2.4	3.5	4.9	6.0	7.7	9.2	11.0	13.4	24°	28°	30°	32°	34°
	0645	2.0	2.4	3.5	4.9	6.0	7.7	9.2	11.0	13.4	36°	42°	45°	48°	51°
	0660	1.8	2.4	3.5	4.9	6.0	7.7	9.2	11.0	13.4	49°	57°	60°	65°	67°
	0690	1.3	2.4	3.5	4.9	6.0	7.7	9.2	11.0	13.4	75°	86°	90°	96°	101°
	0830	2.5	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	24°	28°	30°	32°	34°
	0845	2.3	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	36°	42°	45°	48°	51°
	0860	2.0	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	50°	57°	60°	65°	65°
	0890	1.6	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	75°	86°	90°	96°	101°
	1030	2.8	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	24°	28°	30°	32°	36°
	1045	2.6	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	36°	42°	45°	48°	51°
KSZS	1060	2.2	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	50°	57°	60°	65°	65°
KSZ	1090	2.0	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	75°	86°	90°	96°	101°
	1230	3.0	4.9	6.9	9.8	12.0	15.5	18.3	21.9	26.8	24°	28°	30°	32°	36°
	1245	2.8	4.9	6.9	9.8	12.0	15.5	18.3	21.9	26.8	36°	42°	45°	48°	51°
	1260	2.4	4.9	6.9	9.8	12.0	15.5	18.3	21.9	26.8	49°	57°	60°	65°	65°
	1290	2.1	4.9	6.9	9.8	12.0	15.5	18.3	21.9	26.8	75°	86°	90°	96°	100°
	1530	3.5	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	24°	28°	30°	32°	36°
	1545	3.4	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	36°	42°	45°	48°	51°
	1560	3.1	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	49°	57°	60°	65°	65°
	1590	2.3	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	75°	86°	90°	96°	100°
	2030	4.0	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	24°	28°	30°	32°	36°
	2045	3.8	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	36°	42°	45°	48°	51°
	2060	3.5	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	49°	57°	60°	65°	65°
	2090	2.8	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	75°	86°	90°	96°	100°
	2530	4.5	10.2	14.4	20.4	25.0	32.3	38.2	45.6	55.9	24°	28°	30°	32°	36°
	2545	4.3	10.2	14.4	20.4	25.0	32.3	38.2	45.6	55.9	36°	42°	45°	48°	51°
	2560	3.9	10.2	14.4	20.4	25.0	32.3	38.2	45.6	55.9	49°	57°	60°	65°	66°
	2590	3.2	10.2	14.4	20.4	25.0	32.2	38.2	45.6	55.9	75°	86°	90°	96°	99°
	3030	4.7	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	24°	28°	30°	32°	36°
	3045	4.5	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	36°	42°	45°	48°	51°
	3060	4.3	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	49°	57°	60°	65°	65°
	3090	3.7	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	75°	86°	90°	96°	99°
	3530	5.0	14.3	20.2	28.6	35.0	45.2	53.5	63.9	78.3	24°	28°	30°	32°	36°
	3545	4.8	14.3	20.2	28.6	35.0	45.2	53.5	63.9	78.3	36°	42°	45°	48°	51°
	3560	4.5	14.3	20.2	28.6	35.0	45.2	53.5	63.9	78.3	49°	57°	60°	65°	65°
	3590	3.9	14.3	20.2	28.6	35.0	45.2	53.5	63.9	78.3	75°	86°	90°	96°	99°
	4030	5.5 5.2	16.3	23.1	32.7	40.0	51.6	61.1	73.0	89.4	24° 36°	28° 42°	30°	32° 48°	34°
	4045 4060	5.2	16.3 16.3	23.1 23.1	32.7 32.7	40.0 40.0	51.6	61.1	73.0 73.0	89.4 89.4	49°	57°	45° 60°	65°	51° 65°
KSZ	4090	4.1	16.3	23.1	32.7	40.0	51.6	61.1 61.1	73.0	89.4	75°	86°	90°	96°	97°
	5030	6.3	20.4	28.9	40.8	50.0	51.6 64.5	76.4	91.3	112	24°	28°	30°	32°	34°
	5045	5.8	20.4	28.9	40.8	50.0	64.5	76.4	91.3	112	36°	42°	45°	48°	51°
	5060	5.6	20.4	28.9	40.8	50.0	64.5	76.4	91.3	112	49°	57°	60°	65°	65°
	5090	4.6	20.4	28.9	40.8	50.0	64.5		91.3	112	75°	86°	90°	96°	96°
	6030	6.9	24.5	34.6	49.0	60.0	77.5	76.4 91.7	110	134	24°	28°	30°	32°	34°
	6045	6.4	24.5	34.6	49.0	60.0	77.5	91.7	110	134	36°	42°	45°	48°	51°
	6060	6.2	24.5	34.6	49.0	60.0	77.5	91.7	110	134	49°	57°	60°	65°	65°
	6090	5.4	24.5	34.6	49.0	60.0	77.5	91.7	110	134	75°	86°	90°	96°	95°
	7030	7.5	28.6	40.4	57.2	70.0	90.4	107	128	157	24°	28°	30°	32°	34°
	7045	6.9	28.6	40.4	57.2	70.0	90.4	107	128	157	36°	42°	45°	48°	51°
	7043	6.6	28.6	40.4	57.2	70.0	90.4	107	128	157	49°	57°	60°	65°	65°
	7090	6.0	28.6	40.4	57.2	70.0	90.4	107	128	157	75°	86°	90°	96°	95°
	8030	8.0	32.7	46.2	65.3	80.0	103	122	146	179	24°	28°	30°	32°	34°
	8045	7.3	32.7	46.2	65.3	80.0	103	122	146	179	36°	42°	45°	48°	51°
	8060	6.9	32.7	46.2	65.3	80.0	103	122	146	179	49°	57°	60°	65°	65°
															95°
	8090	6.4	32.7	46.2	65.3	80.0	103	122	146	179	75°	86°	90°	96°	9


KSAMR


Features

- Thicker spray thickness compared with standard flat spray nozzle.
- Precise alignment of nozzle tip and adapter.

Shapes & dimensions

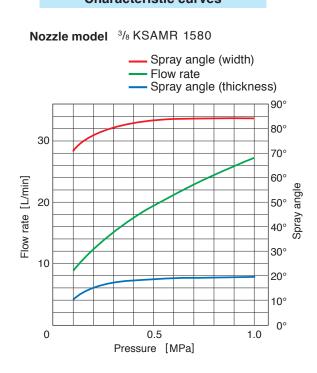
W Offset angle

	<u> </u>										
	Dime	ension	[mm]	Value at 0.3 MPa pressure							
Size	H D L		Flow rate [L/min]	Spray angle (width)	Spray angle (thickness)						
3/8	22	17	40	2 to 20	40 to 110°	20 to 25°					
1/2	26	22	55	10 to 40	40 to 110°	20 to 25°					

Cap

Nozzle tip

Weld adapter


Part	Material	Weight at following size [g]			
		3/8	1/2		
Сар	303 Stainless steel	30	50		
Nozzle tip	303 Stainless steel	10	40		
Weld adapter	304 Stainless steel	30	55		

Models & specifications

Model	Size	Model number	Minimum orifice diameter	Flow rate [L/min] at following pressure [MPa]							at		oray ang ng press		Pa]
			[mm]	0.1	0.2	0.3	0.5	0.7	1.0	1.5	0.1	0.2	0.3	0.5	1.0
		1065	2.6	5.8	8.2	10.0	12.9	15.3	18.3	22.4	56°	63°	65°	68°	70°
		1080	1.9	5.8	8.2	10.0	12.9	15.3	18.3	22.4	70°	78°	80°	83°	84°
	3/8	1565	3.0	8.7	12.2	15.0	19.4	22.9	27.4	33.5	57°	63°	65°	68°	70°
	-78	1580	2.7	8.7	12.2	15.0	19.4	22.9	27.4	33.5	71°	78°	80°	83°	84°
		2065	3.6	11.5	16.3	20.0	25.8	30.6	36.5	44.7	57°	63°	65°	68°	70°
		2080	3.3	11.5	16.3	20.0	25.8	30.6	36.5	44.7	73°	78°	80°	82°	83°
KSAMR		3065	4.4	17.3	24.5	30.0	38.7	45.8	54.8	67.1	57°	63°	65°	68°	70°
IXOAIIII I	1/2	3080	3.8	17.3	24.5	30.0	38.7	45.8	54.8	67.1	73°	78°	80°	81°	82°
	1/2	4065	5.0	23.1	32.7	40.0	51.6	61.1	73.0	89.4	57°	63°	65°	68°	70°
		4080	4.7	23.1	32.7	40.0	51.6	61.1	73.0	89.4	75°	78°	80°	81°	81°
		5065	5.8	28.9	40.8	50.0	64.5	76.4	91.3	112	57°	63°	65°	68°	70°
	3/4	5080	5.2	28.9	40.8	50.0	64.5	76.4	91.3	112	75°	78°	80°	81°	81°
	14	6065	6.5	34.6	49.0	60.0	77.5	91.7	110	134	57°	63°	65°	68°	70°
		6080	5.8	34.6	49.0	60.0	77.5	91.7	110	134	75°	78°	80°	81°	81°

Technical data

Nozzle model 3/8 KSAMR 1565 Distance 300 mm Pressure: 0.6 MPa Pressure: 0.1 MPa Pressure: 0.05 MPa Pressure: 0.05 MPa

300

200

100

0

Distance from nozzle center [mm]

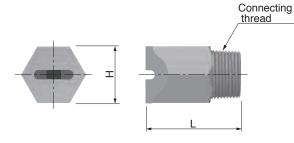
100

200

300

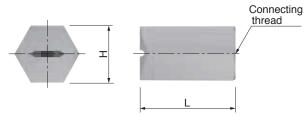
Extra Thickening Flat Spray Nozzle

KSTF


Features

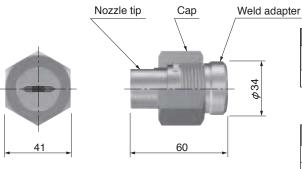
- Extra thick spray pattern.
- Flow distribution is wide and uniform.

Shapes & dimensions


■ Male connection type

Conne- cting	Dime	nsion	Value a	Weight		
thread	Н	L	Flow rate [L/min]	Spray angle (width)	Spray angle (thickness)	[g]
R 3/4	32	67	40 to 110	70 to 140°	25 to 35°	230
R1	38	60	to 150	70 to 140°	25 to 35°	400
R 11/4	46	75	to 200	70 to 140°	25 to 35°	730
R 11/2	50	90	to 250	70 to 140°	25 to 35°	1030

* NPT thread also available


■ Female connection type

Conne- cting	Dime	nsion	Val	Weight			
thread	Н	L	Flow [L/m		Spray angle (width)	Spray angle (thickness)	[g]
Rc 3/8	19	30	6 to	20	70 to 140°	25 to 35°	50
Rc 1/2	24	40	to	40	70 to 140°	25 to 35°	110
Rc 3/4	32	50	to	110	70 to 140°	25 to 35°	240

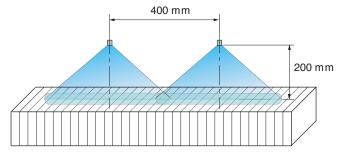
* NPT thread also available

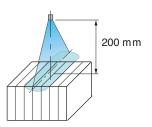
■ Welding type

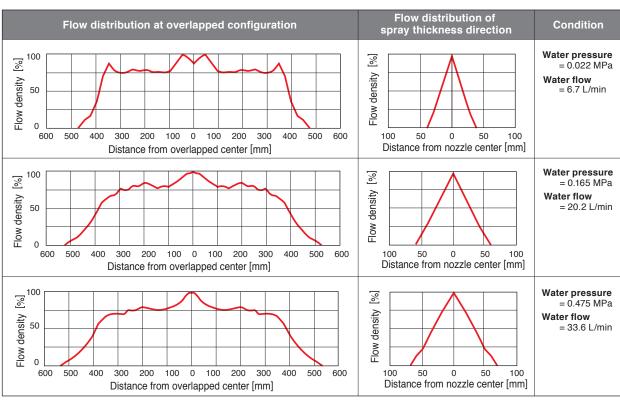
Unit	:	mm

	at 0.3 MPa _l		Weight			
Flow rate [L/min]	Flow rate Spray angle Spray angle [L/min] (width) (thickness)					
6 to 20	70 to 140°	25 to 35°	400			

Part	Material
Сар	303 Stainless steel
Nozzle tip	303 Stainless steel
Weld adapter	304 Stainless steel

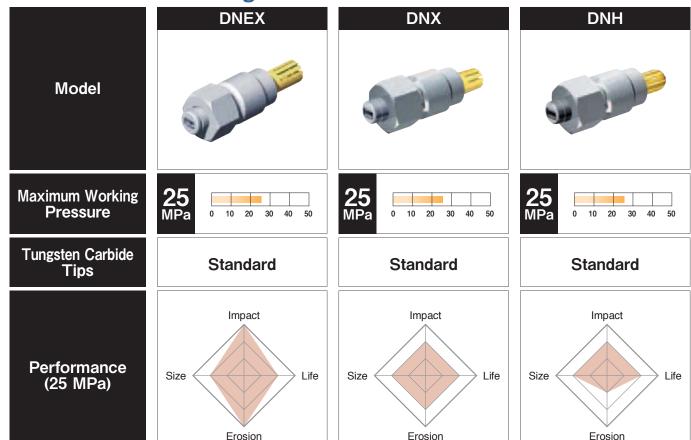

Models & specifications

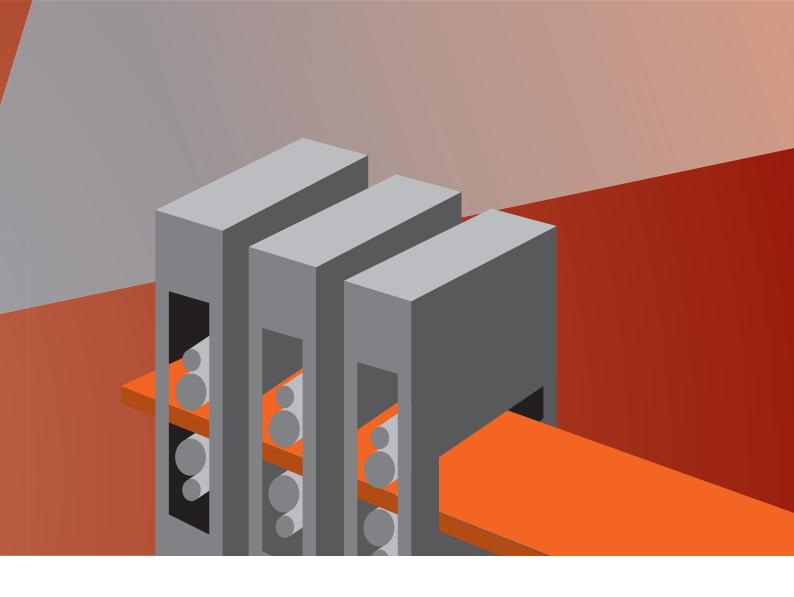

Model	Size	Model number	Minimum orifice diameter	F	Spray angle at 0.3 MPa						
		Humber	[mm]	0.1	0.2	0.3	0.5	0.7	1.0	1.5	0.5
		0698	1.7	3.5	4.9	6.0	7.7	9.2	11.0	13.4	98°
	3/8	11122	1.4	6.4	9.0	11.0	14.2	16.8	20.1	24.6	122°
		13106	2.7	7.5	10.6	13.0	16.8	19.9	23.7	29.1	106°
		20145	2.3	11.5	16.3	20.0	25.8	30.6	36.5	44.7	145°
	1/2	25110	2.6	14.4	20.4	25.0	32.3	38.2	45.6	1.0 1.5 0.1 1.0 13.4 90 14.0 13.4 90 15.5 190 80 197 241 100 199 268 110 199 292 358 100 383 470 10.5 11.5 0.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	110°
		33130	3.4	19.1	26.9	33.0	42.6	50.4	60.2		130°
KSTF	3/4	8580	6.5	49.1	69.4	85.0	110	130	155	190	80°
		108100	7.0	62.4	88.2	108	139	165	197	241	100°
	1	120115	7.0	69.3	98.0	120	155	183	219	268	115°
	-	130115	8.0	75.1	106	130	168	199	237	291	115°
	11/4	160100	9.8	92.4	131	160	207	244	292	358	100°
	1.74	17970	9.0	103	146	179	231	273	327	400	70°
	11/2	210100	14.0	121	171	210	271	321	383	470	100°
	1 /2	245120	12.0	141	200	245	316	374	447	548	120°


Technical data

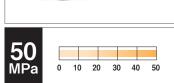
Flow distribution

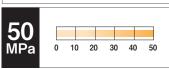
Nozzle model 3/4 KSTF 27139HU

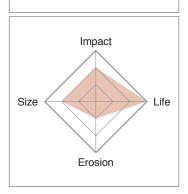


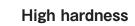

Hot Rolling Mill

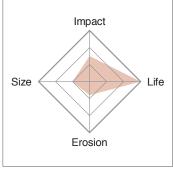
Descaling nozzles are an indispensable part in achieving surface quality in the steel making process. With energy costs rising, demand for difficult grades coming on strong, and an increased need for environmentally friendly systems. Everloy's wide variety of Descaling Nozzles are providing options that were not previously possible. As an industry trendsetter, Everloy keeps raising the standard and advancing the Descaling nozzle technologies.

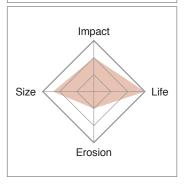

Descaling Nozzles






DNM

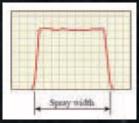


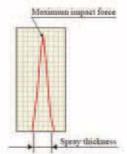


High hardness

Everloy Descaling Nozzle Technology

Erosion


EVERLOY was the first nozzle manufacturer to develop the aluminum erosion test as a completely new nozzle evaluation method. As the aluminum plate A1050 has similar hardness characteristics at ambient temperatures as steel does at the temperature range with which it should be descaled, this is an effective way to measure performance of the nozzle. Since its development, this method has become the industry standard.


Impact Force

One of the most important factors for choosing the Descaling Nozzle is its impact force.

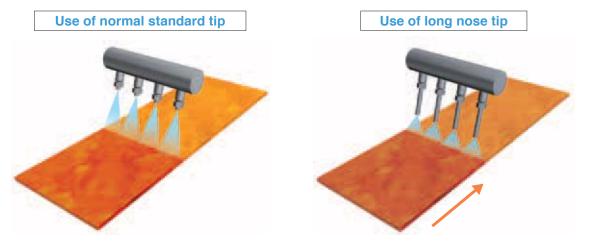
For spray width: Impact force distribution is evaluated to ensure descaling performance across the entire spray width is optimized.

For spray thickness: The thinner the spray thickness, the greater the impact force. The peak of the impact force is called the maximum impact force and this has become the standard to evaluate the performance of our Descaling Nozzle.

Spray Angle – Everloy brand Tungsten Carbide

EVERLOY offers spray angles with single digit increments for precise applications and superior performance. We offer the best tips and grades of tungsten carbide. In-house Manufacturing capabilities, production and quality control are strictly monitored and flexible enough to make fast deliveries feasible.

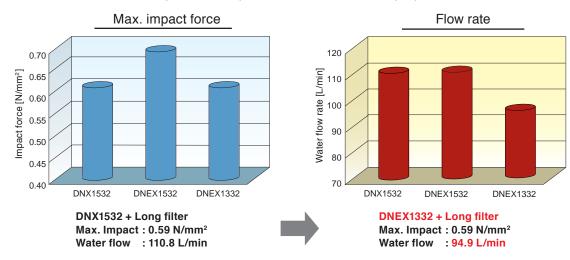
As a leading manufacturer of tungsten carbide, EVERLOY, over the past 70 years, has developed proprietary technology that is applied to extend the life and performance of tungsten carbide.


Overlap

Having a proper overlap is extremely important to avoid stripe marking on the strip surface known as "tiger marks". At the same time, the thickness and waves of the strip need to be considered. Ask an Everloy Sales Representative for the best layout feasible utilizing Everloy's Descaling Calculation Program.

Solutions

Higher impact force options:


- 1. The latest DNEX technology gives customers a higher impact force than conventional nozzles without increasing water flow/pump capacity.
 - → Improved surface quality by keeping same water flow with the current nozzles.
- 2. Applying the long nose tip with the wider spray angle model that compensates for the lack of proper spray height and provides appropriate overlap. The long nose tips are normally used for trial purposes only.

Water flow reduction

With the DNEX technology, even if the flow rate is reduced by 15 %, it keeps the same impact force of the DNX.

Case study at 150 bar pressure and at 300 mm spray distance

Benefit of water flow reduction

Lower water consumption contributes to substantial cost. savings regarding:

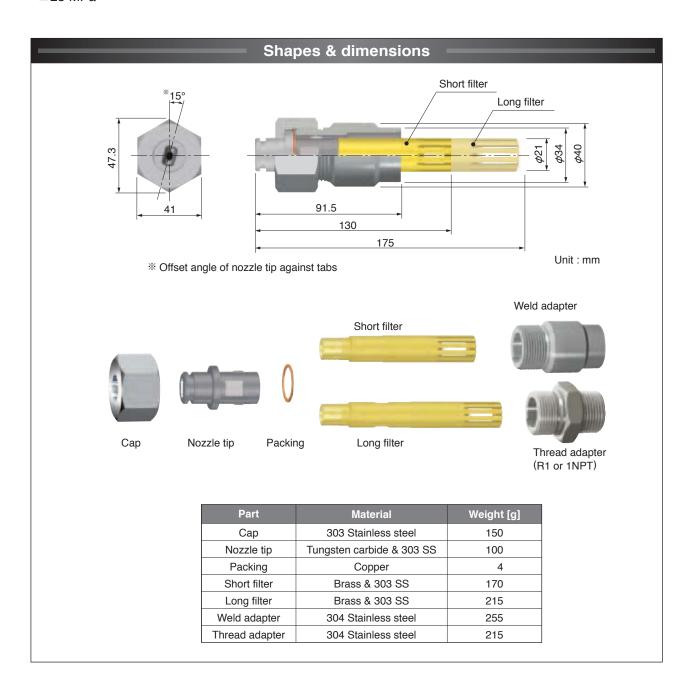
Electricity Reduction

- Reduced pump capacity and/or fewer operating pumps.

Gas Reduction

- Potential for discharge temperature drop from re-heat furnace.

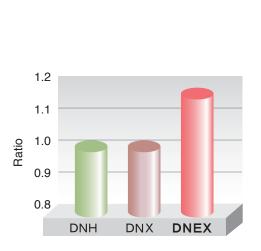
DNEX


Features

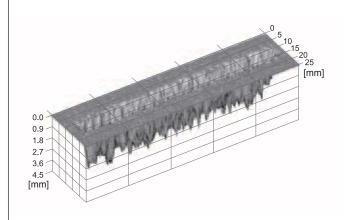
- The highest impact force and the deepest erosion for more efficient scale removal.
- Lower water consumption with the same impact of existing descaling nozzles.
- Sharper spray edge definition for optimized descaling performance.
- ■The DNEXR type for high wear resistance based on a trumpet-shaped orifice is available.

Maximum working pressure

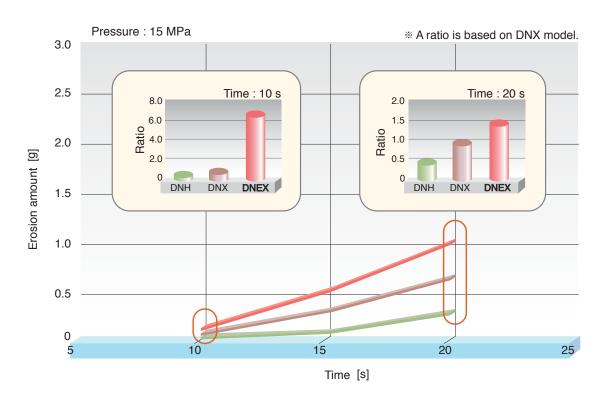
■25 MPa


Typical applications of the DNEX

Impact force graph


The latest model offers customers the following two options:

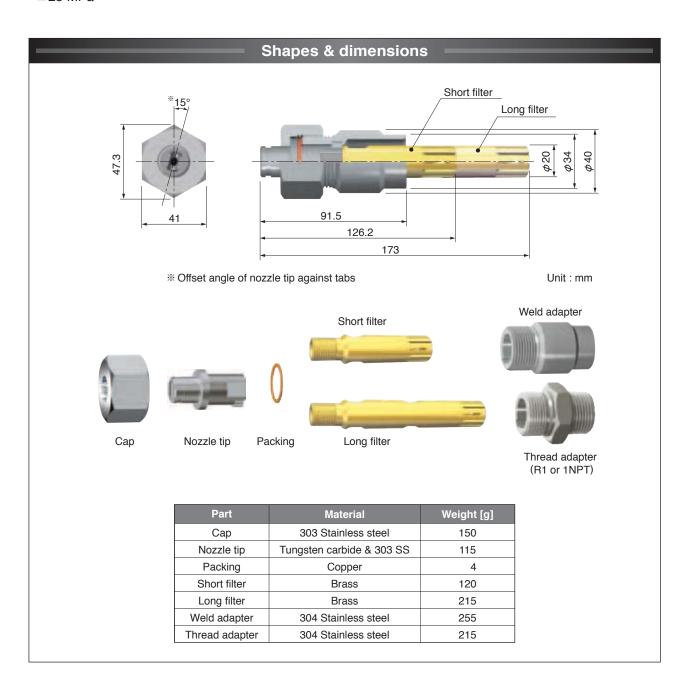
- 1. Improved surface quality with the same water flow and spray angle as competing spray nozzles.
- 2. Water flow reduction. With the DNEX model, even if the flow rate is reduced by 15 %, it keeps the same impact force of the DNX.


Technical data

3D Erosion Footprint

Erosion test comparison

DNX

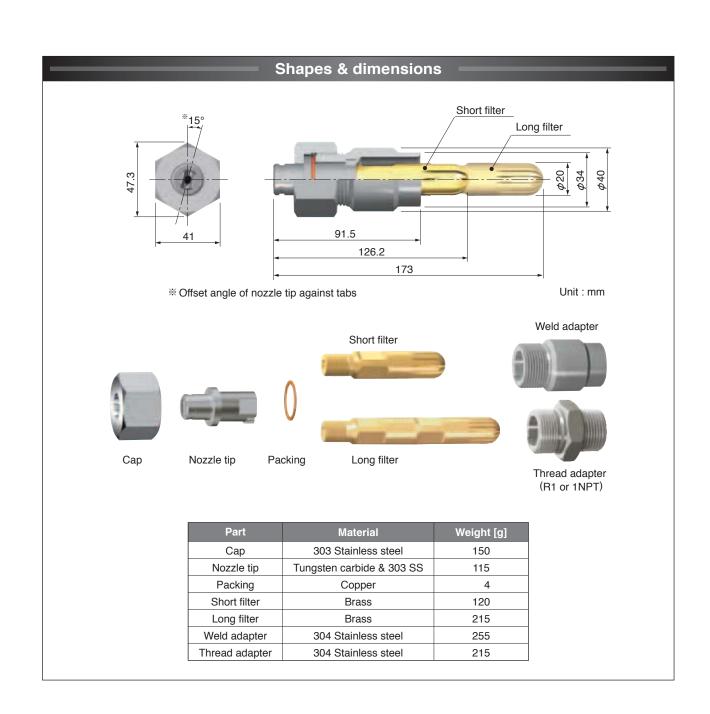

Features

- Higher impact force and deeper erosion for more efficient scale removal.
- Lower water consumption with the same impact of existing descaling nozzles.
- Sharper spray edge definition for optimized descaling performance.

Maximum working pressure

■25 MPa

DNH

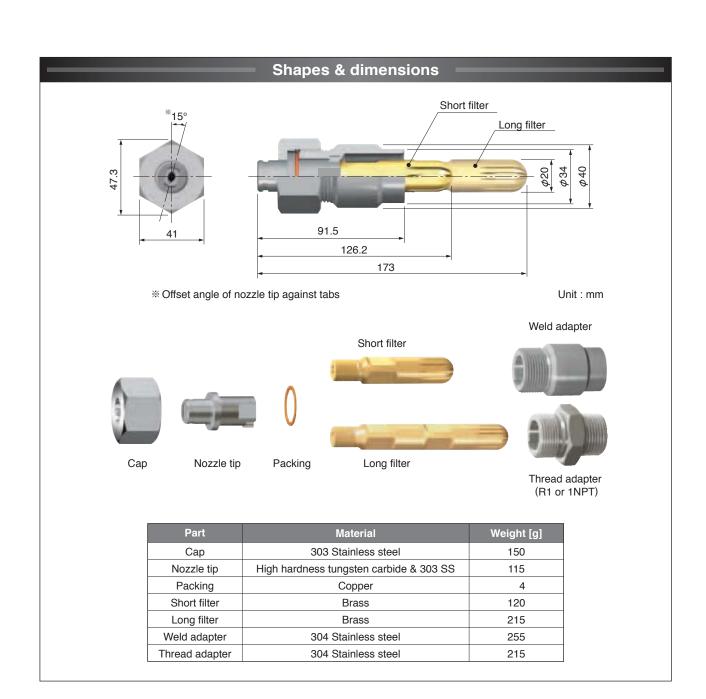

Features

Conventional model to produce higher impact force.

Maximum working pressure

■25 MPa

DNR

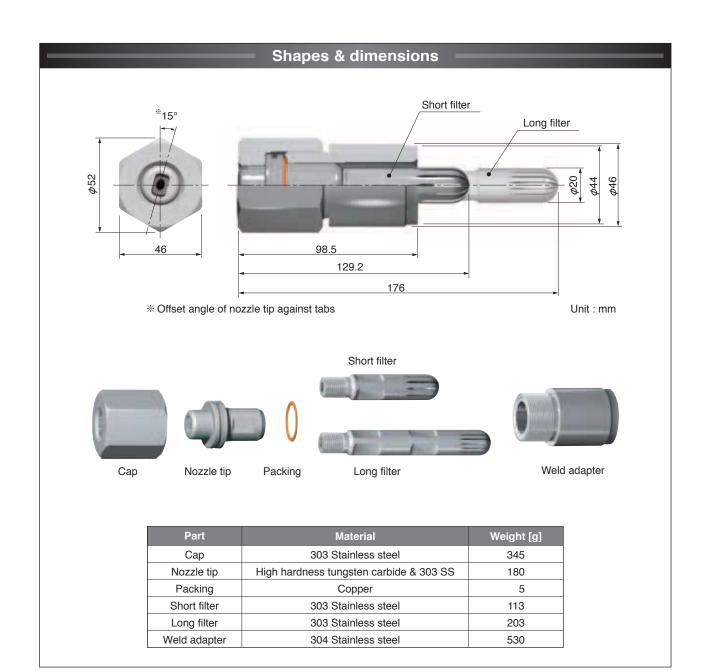

Features

■ The orifice is based on high hardness Tungsten Carbide for extra wear resistance.

Maximum working pressure

■30 MPa

DNK

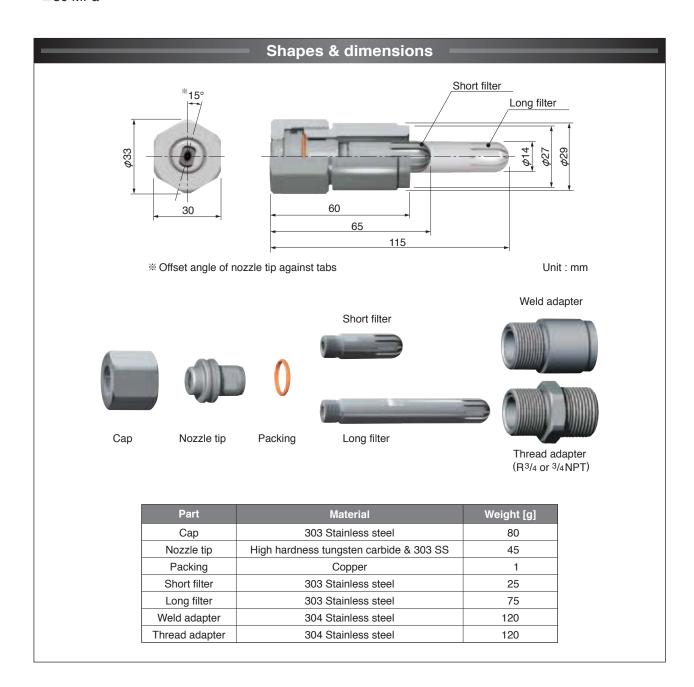

Features

- The trumpet shaped orifice is based on high hardness Tungsten Carbide for extra wear resistance.
- A straightening filter provides a uniform high impact force distribution.

Maximum working pressure

■50 MPa

DNM


Features

- The trumpet shaped orifice based on high hardness Tungsten Carbide for extra wear resistance.
- A straightening filter provides a uniform high impact force distribution.
- ■The compact design of the nozzle is good for mini-mill or any application that requires shorter spray distance.

Maximum working pressure

■50 MPa

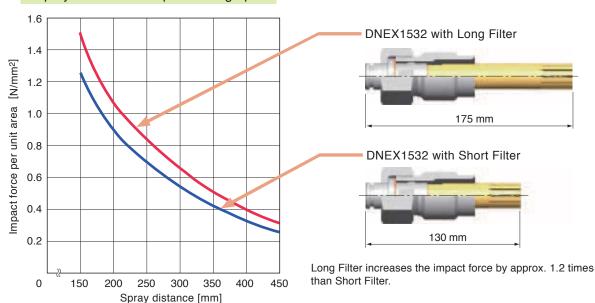
EVERLOY Technology

Models & specifications

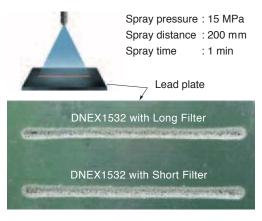
	Model					Model	Minimum orifice		Flow ra	te [L/mi	n1 at fol	lowina	pressui	re [MPa]			Spray angle at following	
DNEX	DNX	DNH	DNR	DNK	DNM	number	diameter [mm]										re [MPa]	
								1	10	15	20	25	30	40	50	15	50	
		•	•	•	•	0325	1.5	5.7	18.0	22.0	25.5	28.5	31.2	36.0	40.2	27°	28°	
						0332	1.4	5.7	18.0	22.0	25.5	28.5	31.2	36.0	40.2	35°	36°	
		•	•	•	•	0340	1.3	5.7	18.0	22.0	25.5	28.5	31.2	36.0	40.2	43°	44°	
						0425	1.7	7.6	24.0	29.4	33.9	37.9	41.6	48.0	53.7	27°	28°	
		•				0432	1.6	7.6	24.0	29.4	33.9	37.9	41.6	48.0	53.7	35°	36°	
						0440	1.5	7.6	24.0	29.4	33.9	37.9	41.6	48.0	53.7	43°	44°	
	•	•				0525	1.9	9.5	30.0	36.8	42.4	47.4	52.0	60.0	67.1	27°	28°	
						0532	1.8	9.5	30.0	36.8	42.4	47.4	52.0	60.0	67.1	35°	36°	
			•	•	•	0540	1.7	9.5	30.0	36.8	42.4	47.4	52.0	60.0	67.1	43°	44°	
						0625	2.1	11.4	36.0	44.1	50.9	56.9	62.4	72.0	80.5	27°	28°	
•	•	•	•	•	•	0632	2.0	11.4	36.0	44.1	50.9	56.9	62.4	72.0	80.5	35°	36°	
						0640	1.9	11.4	36.0	44.1	50.9	56.9	62.4	72.0	80.5	43°	44°	
		•	•	•	•	0725	2.3	13.3	42.0	51.4	59.4	66.4	72.7	84.0	93.9	27°	28°	
						0732	2.2	13.3	42.0	51.4	59.4	66.4	72.7	84.0	93.9	35°	36°	
•		•	•	•	•	0740	2.1	13.3	42.0	51.4	59.4	66.4	72.7	84.0	93.9	43°	44°	
						0825	2.5	14.3	45.3	55.5	64.1	71.6	78.5	90.6	101	27°	28°	
						0832	2.3	14.3	45.3	55.5	64.1	71.6	78.5	90.6	101	35°	36°	
						0840	2.2	14.3	45.3	55.5	64.1	71.6	78.5	90.6	101	43°	44°	
		•				0925	2.6	17.1	54.0	66.1	76.4	85.4	93.5	108	121	27°	28°	
						0932	2.5	17.1	54.0	66.1	76.4	85.4	93.5	108	121	35°	36°	
						0940	2.4	17.1	54.0	66.1	76.4	85.4	93.5	108	121	43°	44°	
						1125	3.1	21.4	67.7	83.0	95.7	107	117	135	151	27°	28°	
		•				1132	2.8	21.4	67.7	83.0	95.7	107	117	135	151	35°	36°	
						1140	2.7	21.4	67.7	83.0	95.7	107	117	135	151	43°	44°	
						1325	3.2	24.5	77.5	95.0	110	123	134	155	173	27°	28°	
						1332	3.1	24.5	77.5	95.0	110	123	134	155	173	35°	36°	
		•				1340	2.9	24.5	77.5	95.0	110	123	134	155	173	43°	44°	
						1525	3.5	28.6	90.5	111	128	143	157	181	202	27°	28°	
						1532	3.3	28.6	90.5	111	128	143	157	181	202	35°	36°	
						1540	3.2	28.6	90.5	111	128	143	157	181	202	43°	44°	
		•				1825	3.8	34.2	108	132	153	171	187	216	241	27°	28°	
						1832	3.6	34.2	108	132	153	171	187	216	241	35°	36°	
•		•	•	•		1840	3.4	34.2	108	132	153	171	187	216	241	43°	44°	
			•	•		1925	3.9	35.7	113	138	160	179	196	226	253	27°	28°	
			•	•		1932	3.7	35.7	113	138	160	179	196	226	253	35°	36°	
		•	•	•		1940	3.6	35.7	113	138	160	179	196	226	253	43°	44°	
				•		2325	4.3	43.0	136	167	192	215	236	272	304	27°	28°	
			•	•		2332	4.1	43.0	136	167	192	215	236	272	304	35°	36°	
	•					2340	3.9	43.0	136	167	192	215	236	272	304	43°	44°	
Niete																		

Note

The available model numbers are shown in the list marked with •. Please ask an Everloy representative for a customized model number. The spray angle shown in the list is calculated from the spray width at 300 mm. A spray angle varies according to a spray distance.


Long Filter

Using a filter with a straightener, turbulence created by the whirling water is eliminated and makes the water laminar. As a result, the spray pattern becomes thinner and it creates higher impact force.



Technical data

Spray distance vs. Impact force graph

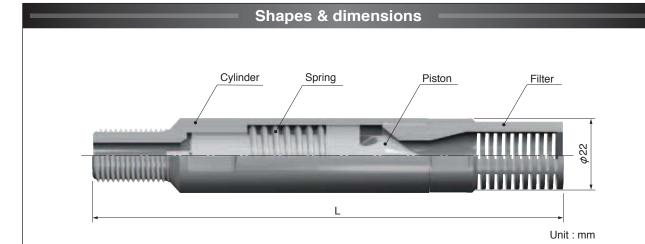
Lead plate erosion test

The Long Filter creates a thinner spray pattern resulting in deeper surface penetration compared with the Short Filter.

Preventive measures against filter clogging

Putting filter slits on the upper side of the header prevents filter from clogging as foreign material gathers on the lower side.

Descaling Check Valve (DCV)


Features

- Optimized internal structure offers less pressure loss which results in higher impact force.
- ■Good for preventing:
 - water hammer, bypass water, temperature drop of steel plates.

Maximum working pressure

■30 MPa

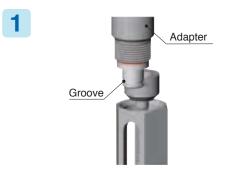
Part	Material
Cylinder	303 Stainless steel
Spring	304 Stainless steel
Piston	304 Stainless steel
Filter	304 Stainless steel

Model	Part No.	Dimension L [mm]	Operating pressure [MPa]	Weight [9]
DNH•DNR	01 V 00	143	1.0	250
DNX	01 ∨ 01	189.5	0.6	330
DNEX	01 V 04	191.5	0.6	290

Remover

Three types of remover tools are available.

You can remove the nozzle unit more easily with them.


Screw remover

With the cap detached, put the screw remover in the nozzle tip groove and pull out the nozzle by turning the tool handle.

The nozzle is held in the nozzle guide of the remover so as to prevent it from dropping during removal.

Instructions

Detach the cap and put the end of the tool in the groove in the nozzle tip.

Push the nozzle guide toward the adapter.

Turn the tool handle counterclockwise.

The nozzle can be removed.

Model	Part No.
DNH · DNR · DNX	01J00
DNM	01J01
DNK	01J02
DNEX	01J10

C-type remover

Prior to loosening the cap, put the C-type remover in the groove in the tip end.

You can pull out and remove the nozzle easily by loosening the cap.

Instructions

Put the C-type remover in the groove in the nozzle tip.

2

Turn the cap counterclockwise by using a wrench or spanner.

3

The nozzle can be removed together with the cap.

Model	Part No.
DNH DNR DNX	01J03
DNEX	01J12

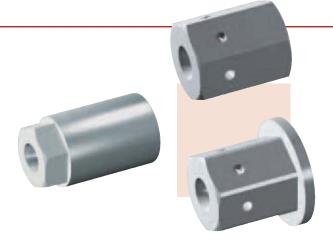
Pull-out remover

With the cap detached, put the pull-out remover in the groove in the nozzle tip and pull the handle. You can pull out the nozzle with ease.

Instructions

Detach the cap and put the end of the tool in the groove in the nozzle tip.

Pull the handle.



The nozzle can be removed.

Model	Part No.
DNH-DNR-DNX-DNEX	01J04
DNM	01J05
DNK	01J06

Protective Cap

Protective caps are the best way to protect nozzle tips from scale or rebound water.

Standard type

Damage to a nozzle tip can be minimized by putting a cap on the entire nozzle tip. To enhance the protectiveness of a nozzle tip, the nozzle tip is designed so that the end of the nozzle tip is located in the inner part of the cap. Also, to prevent water from gathering in the cap, drain holes are located around it.

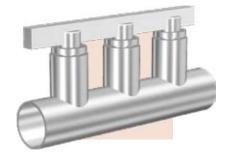
Model	Part No.
DNH-DNR-DNX	01C03
DNM	01C04
DNK	01C05
DNEX	01C14

Flange type

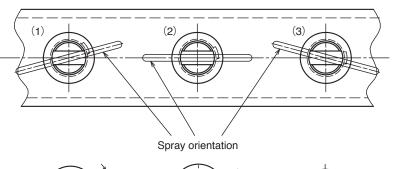
There is a flange round rim protective cap. In addition to the tip, it can protect a wide range.

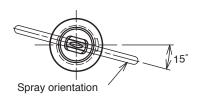
Model	Part No.
DNH-DNR-DNX	01C06
DNM	01C07
DNK	01C08
DNEX	01C15

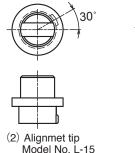
Full face type

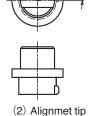

A full face type can protect the adapter as well as the tip on the entire adapter.

Model	Part No.
DNH·DNR·DNX	01C09
DNM	01C10
DNK	01C11
DNEX	01C16


Alignment Tip and Bar


Alignment bar






Alignment tip

(3) Alignmet tip Model No. R-15

Instructions:

Note: All standard descaling tips will have an offset angle of Right -15°.

Model No. F-0

1. Choose an alignment tip from (1) to (3), depending on the offset angle you wish to, then put it onto Everloy adapter.

R-15:

The standard spray orientation is R-15. In this case the adaptor will be installed with the grooves on the side parallel to the header centre line.

Use alignment tip (3) for this type of orientation.

F-0

If all sprays must be at 0° offset angle, please use alignment tip (2). The adaptor will have the grooves on the side at L-15 to the header centre line.

L-15:

If the sprays must be at L-15, please use alignment tip (1). The adaptor will have the grooves on the side at L-30 to the header centre line.

- 2. Turn the adapter by using the alignment bar, so that the slit on the tip would be parallel to the header's longitudinal direction.
- 3. Just put our nozzle tip which has 15 degrees offset angle, then you can get desired spray pattern/offset angle automatically.

Remarks:

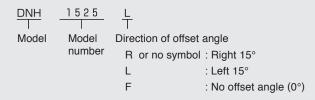
- The alignment bar on the nozzle tip shows 500 mm, but we can manufacture any length based on your request.
- For other nozzle offset angles, please ask for Everloy assistance.

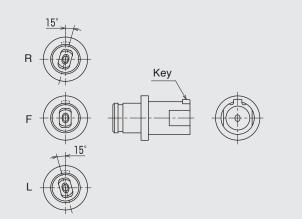
Handling manual

Please follow the specifications below.

Handling specifications

lb a	Model						
Item	DNEX	DNX	DNH	DNR	DNK	DNM	
Max. working pre	25	25	25	30	50	50	
Min. nozzle pito	Min. nozzle pitch [mm]			54	54	60	36
Tightening torque	Сар	245 to 490				490 to 784	98 to 245
[N·m]	Filter		Max.	58.8		Max. 58.8	Max. 29.4


Note: The min. nozzle pitch mentioned above is calculated based on the standard cap utilizing socket wrench.


Part number list

Make sure to confirm the following interchangeable parts. Different combinations may result in damage or water leakage.

Dowt	Model							
Part	DNEX	DNX	DNH	DNH DNR		DNM		
Short filter	Exclusive	xclusive Exclusive Interchangeable (01F01)		Exclusive	Exclusive			
Long filter	Exclusive	Exclusive	Interchange	able (01F04)	Exclusive	Exclusive		
Сар	Exclusive	Interchangeable (01C00)			Exclusive	Exclusive		
Packing		Interchange	Exclusive	Exclusive				
Weld adapter		Interchange	Exclusive	Exclusive				
Thread adapter		Interchange	able (01A01)			Exclusive		

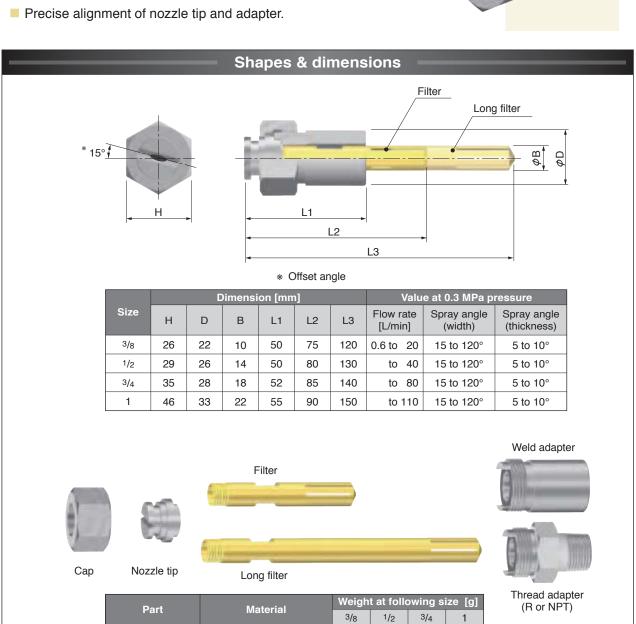
■ Ordering tips

Specification sheet

Please fill in the blanks with your existing descaling nozzle arrangement to that we can select our proper nozzle.

Overseas Seles Depatment FAX: +81-6-6452-2187

mangement to that we can coloct our proper negation	Γ	· · · · · · · · · · · · · · · · · · ·	1432-2107		
		Date :	/	/	/
Customer Name :	Person in Charge :				
(Upper Header) Upper Heade	Location of descaling : Existing Nozzle : Pressure : Flow Rate per One Noz Number of Nozzles :	zzle :	Pcs. p	oer Head	
Lower Hea	ader Size			Pass Lin	ne 1
	Location of descaling Existing Nozzle: Pressure: Flow Rate per One November of Nozzles	ozzle :	Dec		
		•	Pcs.	per Hea	der
(Lower Header)					


Flat Spray Nozzle

KSAM

Features

- A special filter that is mounted on the backside of the nozzle tip creates:
 - defined spray pattern which contributes to higher impact force.
 - Less clogging.

303 Stainless steel

303 Stainless steel

Brass

Brass

304 Stainless steel

303 Stainless steel

Cap

Nozzle tip

Filter

Long filter

Weld adapter

Thread adapter

30

20

20

40

75

60

60

40

70

125

100

110

40

30

40

75

95

80

115

60

90

170

120

140

Models & specifications

Model	Size	Model number	Minimum orifice diameter	Flo	Flow rate [L/min] at following pressure [MPa]							Spray angle at following pressure [MPa]				
		Hullibel	[mm]	0.05	0.1	0.2	0.3	0.5	0.7	1.0	1.5	0.1	0.2	0.3	0.5	1.0
		0430	1.6	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	24°	28°	30°	32°	34°
		0445	1.5	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	36°	42°	45°	48°	51°
		0460	1.3	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	50°	57°	60°	63°	66°
		0490	1.1	1.6	2.3	3.3	4.0	5.2	6.1	7.3	8.9	75°	85°	90°	96°	101°
		0830	2.5	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	24°	28°	30°	32°	34°
		0845	2.3	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	36°	42°	45°	48°	51°
		0860	2.0	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	50°	57°	60°	63°	65°
	3/8	0890	1.6	3.3	4.6	6.5	8.0	10.3	12.2	14.6	17.9	75°	85°	90°	96°	101°
	/8	1030	2.9	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	24°	28°	30°	32°	34°
		1045	2.7	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	36°	42°	45°	48°	51°
		1060	2.4	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	50°	57°	60°	63°	65°
		1090	2.0	4.1	5.8	8.2	10.0	12.9	15.3	18.3	22.4	75°	85°	90°	96°	101°
		1530	3.5	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	24°	28°	30°	32°	34°
		1545	3.3	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	36°	42°	45°	48°	51°
		1560	3.0	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	52°	57°	60°	63°	65°
		1590	2.3	6.1	8.7	12.2	15.0	19.4	22.9	27.4	33.5	76°	86°	90°	96°	100°
		2030	4.0	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	24°	28°	30°	32°	34°
		2045	3.8	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	36°	42°	45°	48°	51°
		2060	3.5	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	52°	57°	60°	65°	65°
		2090	2.8	8.2	11.5	16.3	20.0	25.8	30.6	36.5	44.7	76°	86°	90°	96°	100°
KSAM		3030	4.7	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	24°	28°	30°	32°	34°
KOAIII	1/2	3045	4.5	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	36°	42°	45°	48°	51°
	12	3060	4.3	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	52°	57°	60°	65°	65°
		3090	3.7	12.2	17.3	24.5	30.0	38.7	45.8	54.8	67.1	77°	86°	90°	96°	99°
		4030	5.6	16.3	23.1	32.7	40.0	51.6	61.1	73.0	89.4	24°	28°	30°	32°	34°
		4045	5.3	16.3	23.1	32.7	40.0	51.6	61.1	73.0	89.4	36°	42°	45°	48°	51°
		4060	5.0	16.3	23.1	32.7	40.0	51.6	61.1	73.0	89.4	52°	57°	60°	65°	65°
		4090	4.1	16.3	23.1	32.7	40.0	51.6	61.1	73.0	89.4	79°	86°	90°	96°	97°
		5030	6.3	20.4	28.9	40.8	50.0	64.5	76.4	91.3	112	24°	28°	30°	32°	34°
		5045	5.9	20.4	28.9	40.8	50.0	64.5	76.4	91.3	112	36°	42°	45°	48°	51°
		5060	5.5	20.4	28.9	40.8	50.0	64.5	76.4	91.3	112	52°	57°	60°	65°	65°
	3/4	5090	4.6	20.4	28.9	40.8	50.0	64.5	76.4	91.3	112	80°	87°	90°	96°	96°
	/4	7030	7.4	28.6	40.4	57.2	70.0	90.4	107	128	157	24°	28°	30°	32°	34°
		7045	6.9	28.6	40.4	57.2	70.0	90.4	107	128	157	36°	42°	45°	48°	51°
		7060	6.6	28.6	40.4	57.2	70.0	90.4	107	128	157	52°	57°	60°	65°	65°
		7090	6.0	28.6	40.4	57.2	70.0	90.4	107	128	157	81°	86°	90°	96°	95°
		9045	7.8	36.7	52.0	73.5	90.0	116	137	164	201	36°	42°	45°	48°	51°
		9060	7.5	36.7	52.0	73.5	90.0	116	137	164	201	49°	57°	60°	65°	67°
	1	9090	7.0	36.7	52.0	73.5	90.0	116	137	164	201	75°	86°	90°	96°	101°
	·	11045	8.8	44.9	63.5	89.8	110	142	168	201	246	36°	42°	45°	48°	51°
		11060	8.4	44.9	63.5	89.8	110	142	168	201	246	49°	57°	60°	65°	67°
		11090	7.7	44.9	63.5	89.8	110	142	168	201	246	75°	86°	90°	96°	101°

Technical data

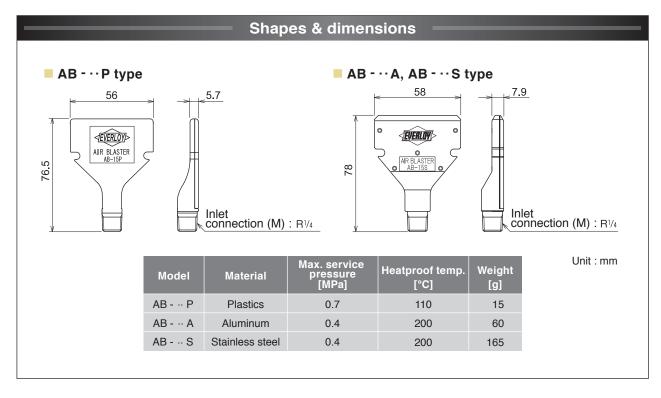
Spray pattern comparison

Nozzle model 3/4 KSAM 5045

Condition

Pressure: 1.0 MPa Distance: 100 mm

AB


Features

- Uniform impact force.
- Wide blow width with a single nozzle.
- Low noise operation.

Applications

- Removing water, oil, and dust.
- Cooling, cleaning, air curtains, etc.

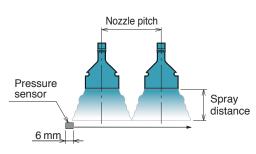
Models & specifications

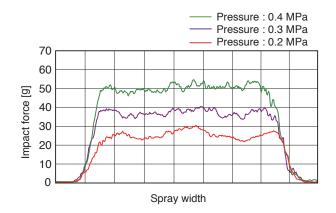
Model	Model Min. ori		А	ir flow rat	e [L/min(r	nor)] at fol	lowing pr	essure [M	lPa]
Hamber	Hamber	[mm]	0.1	0.2	0.3	0.4	0.5	0.6	0.7
	10	0.7	140	220	300	370	440	520	590
AB	15	0.9	230	350	470	590	710	830	950
	25	1.2	400	610	810	1010	1220	1410	1620

Thickness

Spray pattern

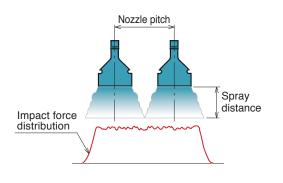
	Air	Spr	Spray width and thickness [mm] at the following spray distance [mm]										
Model	pressure	. 30		10	100		300		500		00	1500	
	[MPa]	Width	Thickness	Width	Thickness	Width	Thickness	Width	Thickness	Width	Thickness	Width	Thickness
	0.1	68	11	80	24	135	84	185	150	300	300	415	415
AB	0.3	65	11	75	23	125	83	175	149	290	290	400	400
	0.5	62	11	70	22	115	82	165	148	285	285	390	390

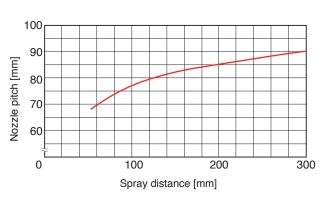

Velocity


Measurement point : Spray center Direction of spray : Horizontal

Model	Model	Air pressure	Velocity [m/s] at the following spray distance [mm]									
Wodel	number	[MPa]	50	100	300	500	1000	1500				
		0.1	42	27	14	10	5	3				
	10	0.3	66	46	25	17	9	6				
		0.5	75	55	34	23	13	9				
		0.1	49	32	17	12	7	4				
AB	15	0.3	78	55	31	21	12	8				
		0.5	90	67	42	30	17	11				
		0.1	59	40	21	14	9	6				
	25	0.3	92	68	40	27	16	11				
		0.5	110	82	53	37	21	14				

Impact force distribution at the overlapped configuration


Nozzle model : AB-15 Nozzle pitch : 77.5 mm Spray distance : 100 mm



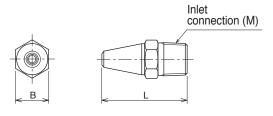
Recommended nozzle pitch for uniform impact force distribution orifice

Nozzle model : AB-15

KBV

Features

- Ultrasonic design by computer analysis.
- More concentrated into a small area.
- Low maintenance and easy installation.
- The tapered design eliminates turbulence surrounding the air flow.

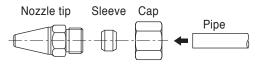

Applications

- Removing moisture, oil, and dust.
- Drying.

Shapes & dimensions

■ KBV ···· C type

Model	Dime [m	nsion m]	Connecting thread
	В	L	unreau
¹/8 KBV · · · C	10	29.5	R1/8
¹/4 KBV · · · C	14	34	R1/4
3/8 KBV · · · C	17	44	R3/8
¹/2 KBV · · · C	22	50	R1/2
3/4 KBV · · · C	29	60	R3/4


■ KBV ····S type (Pipe connection type)

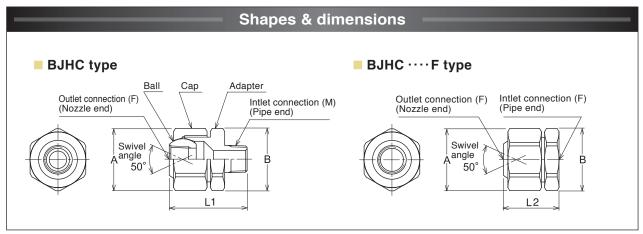
Assembly drawing Inlet connection (M)

Model	Dime [m	nsion m]	Connecting thread	Pipe dia.	
	В	L	thread	[mm]	
¹/8 KBV · · · S	14	(40)	G1/8	6	
⅓ KBV · · · S	17	(45)	G1/4	8	
³/8 KBV · · · S	21	(52)	G3/8	10, 12	

Exploded drawing

Model	Matarial	Weight at following size [g]							
Model	Material	1/8	1/4	3/8	1/2	3/4			
KBV····C	Brass	25	30	55	130	240			
KSV····C	Stainless steel	24	29	52	122	226			
KAV····C	Aluminum	8	10	16	41	76			
KBV····S	Brass	35	50	80	-	-			
KSV····S	Stainless steel	33	47	75	-	-			
KAV····S	Aluminum	11	16	25	-	-			

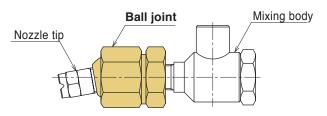
BJHC


Features

The ball can be fixed in a desired position by loosening or tightening the cap.

Maximum service pressure

1 MPa


Models & specifications

Model	Olasa	Connecti	ng thread		Dimension		Weight [g]		
Model	Class	Pipe end	Nozzle end	L1	L2	A(Hex.)	B(Hex.)	Brass	303 SS
	1/8 × 1/8	R 1/8	Rc 1/8	32	_	22	22	85	80
	$1/4 \times 1/4$	R 1/4	Rc 1/4	41	_	29	29	180	170
	$3/8 \times 3/8$	R 3/8	Rc 3/8	49	_	35	35	310	290
	$1/2 \times 1/2$	R 1/2	Rc 1/2	56	_	41	38	480	450
	$3/4 \times 3/4$	R 3/4	Rc 3/4	65	_	50	46	830	780
BJHC	1 × 1	R 1	Rc 1	78	_	63	58	1690	1590
BJHC	1/8 × 1/8 F	Rc ¹ /8	Rc 1/8	_	24	22	22	70	65
	1/4 × 1/4 F	Rc 1/4	Rc 1/4	_	29	29	29	150	140
	3/8 × 3/8 F	Rc 3/8	Rc 3/8	_	35	35	35	260	240
	1/2 × 1/2 F	Rc 1/2	Rc 1/2	_	39	41	38	390	370
	$3/4 \times 3/4 F$	Rc ³ /4	Rc 3/4	_	46	50	46	700	660
	1 × 1 F	Rc 1	Rc 1	_	60	63	58	1400	1320

 $^{*\,\}text{Different}$ inlet/outlet connections are available upon request. (example: $^{3/8}\times^{1/4}$)

How to install this with nozzles?

Nozzle tip is adjustable for any angle by installing a ball joint at the edge of the inlet tube. (see sample picture below)

KYORITSU GOKIN CO., LTD.

Head Office	12-16, Imazu-yamanaka-cho, Nishinomiya, Hyogo-pref. 663-8211 Japan						
Kaibara Works	130-3, Kitayama, Kaibara-cho, Tamba, Hyougo-pref.						
Nozzle Division	663-3313 Japan						
Overseas Sales	2-24, 4-chome, Sagisu, Fukushima-ku, Osaka, 553-0002 Japan						
Department	TEL: +81-6-6452-2273 FAX: +81-6-6452-2187						
Subsidiary Company	EVERLOY (SHANGHAI) CO., LTD. Room 1706, NO.345, Xian-xia Road, Chang-Ning District, Shanghai, China 200336 TEL: +86-21-5206-9733 FAX: +86-21-5206-9755						
Subsidiary	TOKAI GOKIN KOGYO CO., LTD.						
Company	236-1, Bougane-cho, Seto, Aichi-pref. 489-0979 Japan						
URL http://www.	everloy-spray-nozzles.com/ E-mail oversea@everloy.co.jp						

CAT.17E-R2-1604

ISO 9001/14001 CERTIFICATION